Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

LNG Truck Demonstration

2002-10-21
2002-01-2740
Among on-road motor vehicles, diesel-fueled heavy-duty trucks emit disproportionately high amounts of oxides of nitrogen (NOx) and particulate matter (PM). The trucking industry has taken an active interest in the use of engines powered by liquefied natural gas (LNG) to reduce NOx and PM emissions. However, major barriers exist to widespread use of LNG in trucking applications, including reduced performance and higher initial capital costs compared to diesel-fueled vehicles, as well as a limited fueling infrastructure. To help address these barriers, the California Energy Commission (Commission) joined with the South Coast Air Quality Management District (SCAQMD) and the U.S. Department of Energy's National Renewable Energy Laboratory (DOE/NREL) in cost sharing a program led by the West Coast Transportation Technology Group of Arthur D. Little, Inc. (ADLittle).
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

Speciation of Organic Compounds from the Exhaust of Trucks and Buses: Effect of Fuel and After-Treatment on Vehicle Emission Profiles

2002-10-21
2002-01-2873
A study was performed in the spring of 2001 to chemically characterize exhaust emissions from trucks and buses fueled by various test fuels and operated with and without diesel particle filters. This study was part of a multi-year technology validation program designed to evaluate the emissions impact of ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different heavy-duty vehicle fleets operating in Southern California. The overall study of exhaust chemical composition included organic compounds, inorganic ions, individual elements, and particulate matter in various size-cuts. Detailed descriptions of the overall technology validation program and chemical speciation methodology have been provided in previous SAE publications (2002-01-0432 and 2002-01-0433).
Technical Paper

Impact of Engine Operating Conditions on Low-NOx Emissions in a Light-Duty CIDI Engine Using Advanced Fuels

2002-10-21
2002-01-2884
The control of NOx emissions is the greatest technical challenge in meeting future emission regulations for diesel engines. In this work, a modal analysis was performed for developing an engine control strategy to take advantage of fuel properties to minimize engine-out NOx emissions. This work focused on the use of EGR to reduce NOx while counteracting anticipated PM increases by using oxygenated fuels. A DaimlerChrysler OM611 CIDI engine for light-duty vehicles was controlled with a SwRI Rapid Prototyping Electronic Control System. Engine mapping consisted of sweeping parameters of greatest NOx impact, starting with OEM injection timing (including pilot injection) and EGR. The engine control strategy consisted of increased EGR and simultaneous modulation of both main and pilot injection timing to minimize NOx and PM emission indexes with constraints based on the impact of the modulation on BSFC, Smoke, Boost and BSHC.
Technical Paper

Central Carolina Vehicle Particulate Emissions Study

2003-03-03
2003-01-0299
In-use, light-duty vehicles were recruited in Cary, North Carolina for emissions testing on a transportable dynamometer in 1999. Two hundred forty-eight vehicles were tested in as received condition using the IM240 driving cycle. The study was conducted in two phases, a summer and winter phase, with half of the vehicles recruited during each phase. Regulated emissions, PM10, carbonaceous PM, aldehydes and ketones were measured for every test. PM2.5, individual volatile hydrocarbons, polycyclic aromatic hydrocarbons, sterane and hopane emissions were measured from a subset of the vehicles. Average light-duty gasoline PM10 emission rates increased from 6.5 mg/mi for 1993-97 vehicles to 53.8 mg/mi for the pre-1985 vehicles. The recruited fleet average, hot-stabilized IM240 PM10 emission rate for gasoline vehicles was 19.0 mg/mi.
Technical Paper

Fischer-Tropsch Diesel Fuels - Properties and Exhaust Emissions: A Literature Review

2003-03-03
2003-01-0763
Natural gas, coal, and biomass can be converted to diesel fuel through Fischer-Tropsch (F-T) processes. Variations of the F-T process and/or product work-up can be used to tailor the fuel properties to meet end-users needs. Regardless of feedstock or process, F-T diesel fuels typically have a number of very desirable properties. This review describes typical F-T diesel fuel properties, discusses how these fuel properties impact pollutant emissions, and draws together data from known engine and chassis dynamometer studies of emissions. The comparison of fuel properties reveals that F-T diesel fuel is typically one of two types - a very high cetane number (>74), zero aromatic product or a moderate cetane (∼60), low aromatic (≤15%) product. The very high cetane fuels typically have less desirable low temperature properties while the moderate cetane fuels have cold flow properties more typical of conventional diesel fuels.
Technical Paper

Thermal Load Reduction System Development in a Hyundai Sonata PHEV

2017-03-28
2017-01-0186
Increased market penetration of electric drive vehicles (EDVs) requires overcoming a number of hurdles, including limited vehicle range and the elevated cost in comparison to conventional vehicles. Climate control loads have a significant impact on range, cutting it by over 50% in both cooling and heating conditions. To minimize the impact of climate control on EDV range, the National Renewable Energy Laboratory has partnered with Hyundai America and key industry partners to quantify the performance of thermal load reduction technologies on a Hyundai Sonata plug-in hybrid electric vehicle. Technologies that impact vehicle cabin heating in cold weather conditions and cabin cooling in warm weather conditions were evaluated. Tests included thermal transient and steady-state periods for all technologies, including the development of a new test methodology to evaluate the performance of occupant thermal conditioning.
Technical Paper

Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus

2011-04-12
2011-01-0863
Plug-in hybrid electric vehicle (PHEV) technology may reduce fuel consumption and tailpipe emissions in many medium- and heavy-duty vehicle vocations, including school buses. The true magnitude of these reductions is best assessed by comparative testing over relevant drive cycles. The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data, and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation PHEV school bus equipped with a 6.4 L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. For a baseline comparison, a Bluebird 7.2 L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity.
Technical Paper

Range Extension Opportunities While Heating a Battery Electric Vehicle

2018-04-03
2018-01-0066
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination [1]. The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermal storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 °C to −18 °C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.
Technical Paper

Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

2018-04-03
2018-01-0218
Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25°C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 °C, as well as knock-limited load measurements across a range of IATs up to 90 °C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels’ knock resistance. The DI load sweeps at 50°C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied.
Technical Paper

Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

2018-04-03
2018-01-0361
A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol’s high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion.
Technical Paper

GPS Data Filtration Method for Drive Cycle Analysis Applications

2012-04-16
2012-01-0743
Global Positioning System (GPS) data acquisition devices have proven useful tools for gathering real-world driving data and statistics. The data collected by these devices provide valuable information in studying driving habits and conditions. When used jointly with vehicle simulation software, the data are invaluable in analyzing vehicle fuel use and performance, aiding in the design of more advanced and efficient vehicle technologies. However, when employing GPS data acquisition systems to capture vehicle drive-cycle information, a number of errors often appear in the captured raw data samples. Common sources of error in GPS data include sudden signal loss, extraneous or outlying data points, speed drifting, and signal white noise, all of which combine to limit the quality of field data for use in downstream applications.
Technical Paper

Cost Comparison of Wind Energy Delivered as Electricity or Hydrogen for Vehicles

2013-04-08
2013-01-1038
A simple cost analysis framework compares hydrogen and electricity as energy carriers delivering wind energy to light-duty vehicles (LDVs). We compare four wind energy pathways within a 2040-2050 timeframe and at large scale: a dedicated electricity transmission pathway and three distinct wind-hydrogen delivery pathways. Our results suggest that wind-hydrogen pathways will tend to be more costly than pure electricity transmission pathways on a per-mile driven cost basis ($/mile), but to a greater or lesser degree depending upon the pathway. The additional cost could be warranted to the degree that the hydrogen pathway adds value to consumers through full performance fuel cell electric vehicles (FCEV) compared to plug-in electric vehicles (PEVs), or through reduced variability in wind energy supply. If these benefits add value beyond the incremental costs suggested by our simple cost framework, some shift toward co-production or even dedicated hydrogen wind farms may be warranted.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Mobility Energy Productivity Evaluation of Prediction-Based Vehicle Powertrain Control Combined with Optimal Traffic Management

2022-03-29
2022-01-0141
Transportation vehicle and network system efficiency can be defined in two ways: 1) reduction of travel times across all the vehicles in the system, and 2) reduction in total energy consumed by all the vehicles in the system. The mechanisms to realize these efficiencies are treated as independent (i.e., vehicle and network domains) and, when combined, they have not been adequately studied to date. This research aims to integrate previously developed and published research on Predictive Optimal Energy Management Strategies (POEMS) and Intelligent Traffic Systems (ITS), to address the need for quantifying improvement in system efficiency resulting from simultaneous vehicle and network optimization. POEMS and ITS are partially independent methods which do not require each other to function but whose individual effectiveness may be affected by the presence of the other. In order to evaluate the system level efficiency improvements, the Mobility Energy Productivity (MEP) metric is used.
Technical Paper

King County Metro - Allison Hybrid Electric Transit Bus Testing

2006-10-31
2006-01-3570
Chassis dynamometer testing of two 60 foot articulated transit busses, one conventional and one hybrid, was conducted at the National Renewable Energy Laboratory's, ReFUEL facility. Both test vehicles were 2004 New Flyer busses powered by Caterpillar C9 8.8L engines, with the hybrid vehicle incorporating a GM-Allison advanced hybrid electric drivetrain. Both vehicles also incorporated an oxidizing diesel particulate filter. The fuel economy and emissions benefits of the hybrid vehicle were evaluated over four driving cycles; Central Business District (CBD), Orange County (OCTA), Manhattan (MAN) and a custom test cycle developed from in-use data of the King County Metro (KCM) fleet operation. The hybrid vehicle demonstrated the highest improvement in fuel economy (mpg basis) over the low speed, heavy stop-and-go driving conditions of the Manhattan test cycle (74.6%) followed by the OCTA (50.6%), CBD (48.3%) and KCM (30.3%).
Technical Paper

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOX Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

2006-04-03
2006-01-0425
Increasing fuel costs and the desire for reduced dependence on foreign oil have brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. One of the obstacles to the increased use of diesel engines in this platform is the Tier 2 emission standards. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies-such as common rail fuel injection systems, low-sulfur diesel fuel, oxides of nitrogen (NOX) adsorber catalysts or NACs, and diesel particle filters (DPFs)-allows for the development of powertrain systems that have the potential to comply with these future requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity [1, 2, 3, 4, 5].
Technical Paper

Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

2018-04-03
2018-01-0358
Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulate emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work.
Technical Paper

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

2013-04-08
2013-01-0381
In 2011, the United States imported almost half of its petroleum. Lightweighting vehicles reduces that dependency directly by decreasing the engine, braking and rolling resistance losses, and indirectly by enabling a smaller, more efficiently operating engine to provide the same performance. The Future Automotive Systems Technology Simulator (FASTSim) tool was used to quantify these impacts. FASTSim is the U.S. Department of Energy's (DOE's) high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It steps through a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains.
X